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Nonoscillatory advection schemes contain switches, so that the derivative of the
numerical solution at any time step with respectto that at the previous time step may be
discontinuous. In consequence, sensitivities calculated using the adjoint of the numer-
ical scheme may be discontinuous or ambiguous. This discontinuity is not a property
of the continuous advection equation; it is an artefact of the numerical schemes used
to solve it. The problem is demonstrated in some simple one-dimensional test cases.
We derive a result showing that there is no possibility of smoothing the switches in
nonoscillatory advection schemes to remove the discontinuities while retaining an
obvious and desirable scaling property. We discuss some alternative approaches to
deriving the adjoint schemes needed for sensitivity calculatiomns2001 Academic Press
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1. INTRODUCTION

There are many problems in atmospheric and oceanic science where calculatiol
sensitivities is required. These include (i) variational data assimilation, [e.g., 8, 25, 3
(i) parameter estimation or retrieval, [e.g., 12, 34]; (iii) understanding physical mech
nisms behind phenomena such as lee cyclogenesis [28], extratropical cyclones [13], bls
ing weather patterns [22], and EIMNIT19]; and (iv) quantifying the stability of realistic
atmospheric flows [7], with application to generating perturbed initial states for ensem
weather forecasts [9] and for the possibility of using small pilotless airplanes to adaptiv
target observations for initializing weather forecasts [20].

For any given mathematical or numerical model, sensitivities can often be compu
efficiently using the adjoint of the corresponding tangent linear model. For example, see
for an introduction to adjoints and their uses. In all of the applications mentioned abo
adjoints are used for computing sensitivities because their computational cost is compar
to that of the original model, making them vastly more efficient than other methods.
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Because both the tangent linear model and its adjoint are linear, one crucial factor limif
the applicability of adjoints is nonlinearity in the original mathematical or numerical mode
For example, in four-dimensional variational data assimilation, which attempts to minimi
the mismatch between weather observations and the state of a weather forecast n
over a period of time as well as a region of space, the nonlinearity of the atmosph
flow limits the assimilation period to about 1 day at most. For similar reasons, adjoil
are of limited use for quantifying climate sensitivity [15]. The nonlinearity problem i
particularly acute when the mathematical or numerical model contains discontinuities
switches. For example, the representation of cumulus clouds in a weather forecast m
is usually triggered by a certain threshold value of the atmospheric stability. The m
extreme such form of nonlinearity, where fields at time step1 depend discontinuously
on fields at time stem, can lead to unbounded values for sensitivities. A milder forn
of nonlinearity, in which derivatives of fields at step+ 1 with respect to fields at step
n are discontinuous, leads to discontinuous or ambiguous values for sensitivities [
Of course, such unbounded or discontinuous sensitivites might reflect properties of
original physical system (for example, the sensitivity of cloud liquid water concentrati
to temperaturéc /9T is discontinuous at the temperature at which condensation begin
then, arguably, it may be desirable to capture them in the adjoint calculation. On the of
hand, extreme nonlinearities such as switches might be introduced in a mathematic:
numerical model without being present in the original physical system. Then any st
large or discontinuous sensitivitives indicated by an adjoint calculation would be entir
spurious artefacts of the mathematical or numerical model and unrelated to the orig
physical system. It is this last possibility that is the subject of this paper, in the context
nonoscillatory advection schemes.

Godunov’s theorem [11] says that any linear, monotone advection scheme is at n
first-order accurate. First-order schemes, however, are regarded as too diffusive for n
applications. Therefore, if we require a scheme better than first-order accurate while av
ing spurious oscillations, then we must use a nonlinear advection scheme, even thoug
advection problem itself is linear in the advected variable when the advecting flow is giv
There are many examples of nonlinear nonoscillatory advection schemes in the literat
including schemes based on flux limiters or slope limiters (e.g., see [5, 18] for an introd
tion), flux-corrected transport (FCT) [4, 32], or semi-Lagrangian schemes with nonline
interpolation to ensure preservation of monotonicity [1, 30].

This nonlinearity of nonoscillatory advection schemes raises a number of issues regar
the properties of numerical advection and how they relate to those of real advection, ¢
[26]. In this paper we investigate how the nonlinearity of nonoscillatory advection schen
affects the calculation of sensitivities, particularly when using adjoints.

In Section 2 below, we use simple examples to illustrate that the nonlinearity of so
commonly used kinds of nonoscillatory advection schemes is, indeed, strong enoug
lead to ambiguous sensitivities in adjoint calculations. It might be hoped that it would
possible to construct nonoscillatory advection schemes whose adjoints are well-beh:
(in a sense to be made precise below). In Section 3, we show that any scheme havir
obvious and desirable scaling property cannot have a well-behaved adjoint unless the scl
is fully linear. But then, by Godunov’s theorem, the scheme cannot be both nonoscillat
and better than first-order accurate. This result motivates us in Section 4.1 to cons
alternative strategies for constructing adjoints of advection problems, and to consider s
issues that arise. All of this discussion is relevant even if no perturbations to the advec
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velocity are considered. Further issues that can arise when perturbations to the adve!
velocity are considered in Section 4.2.

2. EXAMPLES OF PROBLEMS WITH ADJOINTS OF NONOSCILLATORY
ADVECTION SCHEMES

In this section, we use simple examples to show that the nonlinearity of typical nonosci
tory advection schemes does, indeed, lead to ambiguous results from sensitivity calculati
thatis, the calculated sensitivities depend on exactly how the calculation is implemented
on whether the calculation is carried out through multiple perturbed forward integratio
or using an adjoint.

For our test case, we use a one-dimensional periodic grid of 20 equally spaced poi
A control forward integration of the linear advection equation

d d

with u constant is carried out, using one of the advection schemes discussed below
begin with, the initial profile is taken to be a delta function, since this illustrates the proble
most clearly. The initial profile is advected toward the right with a constant Courant numt
uAt/Ax of 0.5 for 20 steps. Legi" be the advected quantity at tité grid point aftem
steps. The valueg are saved at every time step of the control integration; these valu
provide the “trajectory” in phase space about which the scheme is linearized to provide
tangent linear model and its adjoint. We then ask what is the sensitivity

93

0
1= g0
]

of a certain functional of the final state to changes in the initial dqﬁ’a? For illustration
we take a simple case in whichis just the value of| at the 15th grid point at the final time
J =afe.

We calculated the sensitivity in two ways. The first way (the “multirun method”) use
multiple perturbed forward integrations. For each grid pginthe initial valueo|]O is per-
turbed toq]-O + ¢ (¢ # 0) and the integration rerun, yielding a modified final state i
replaced byg?? + A, say. The sensitivity is then estimated(a%% A /e. If the advection
scheme were linear, then this estimate(ﬁ(?rwould be exact and would be independent of
the value ot. It would also be independent of the initial data used in the control integratio
For a nonlinear scheme we might hope tﬁﬁtwould exist and thaf /¢ — G? ase — 0.

We therefore use a small valae= 0.001 (that is, small compared to the rangejafalues
in the profile) but check for convergence by rerunning wita —0.001.

The second way of estimating the sensitivity uses the adjoint of the tangent linear mo
The values ofy at stepn are functions of those at step— 1, and if those functions are
differentiable, then the Jacobian

aq"
gt
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exists. Letting

aJ
GT == a—qn,
J

we can then evolve the sensitivity backwards in time using

R e @)
] - | n-1°
i 94

that is, by multiplying the vecto&" by the transpose of the Jacobian matrix (e.g., [6]). |
the original advection scheme is linear, then the results will be identical to those obtai
with the multirun method. If, in addition, the advecting wind is constant, then it may eas
be verified that (2) amounts to advecting the sensitivity backwards in time using the origi
advection scheme.

Figure 1 shows the results of this test case using the linear, third-order QUICKEST sch
[16]. Panels (a) and (b) show the initial and final profiles for the control integration. Pat
(c) shows the sensitivity at the final tin@?”. It is given byG22 = 1, G2* = 0 for j # 15.
Panels (d) and (e) show the sensitivities to initial conditi@ﬁis:alculated using the adjoint
method and the multirun method, respectively. As expected, because the advection scl
is linear, the two methods yield the same sensitivities, and both agree with advecting
final sensitivity backwards using the QUICKEST scheme (compare with the mirror ima
of panel (b)). The sensitivity calculation is clearly well-behaved in this case.

Figure 2 shows the sensitivities obtained when the QUICKEST scheme is made nono
latory by adding the Universal Limiter [17]. Now the sensitivity calculated by the multi
run method is no longer independent of the value .ofn particular, the values for =
0.001 (solid curve) are quite different from those foe= —0.001 (dotted curve). Ag| is
decreased further, the sensitivities do not converge. Furthermore, the values obtained
the adjoint calculation are different again. The sensitivity calculation is clearly not we
behaved in this case.

This bad behavior arises because the Jacobian

aq
gt

does not depend continuously on tife'’s. A simple example will illustrate the essence of
the problem without getting into the details of the advection scheme. QUICKEST with t
Universal Limiter, and indeed almost all other nonoscillatory advection schemes, involve
computation of the minimum (or maximum) of certain sets of numbers, or some equival
calculation. Consider the functioh = min(a, b). Then fora < b

af of

while fora > b

of of
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FIG. 1. Test case results for the linear QUICKEST scheme. (a) Initial condition for the control forwar
integration. (b) Final state for the control forward integration. (c) Sensitivity at the final time. (d) Sensitivity at tt
initial time computed using the adjoint. (e) Sensitivity at the initial time computed using the multirun method.

However, the partial derivatives are discontinuous at b. This explains why the multirun
sensitivity calculations yield such different answers for positive and negatifeat any
point in the control forward integration, the situation analogous tob (or a sufficiently
close tob) occurs, then positive and negative values ofill put the solution into two
different regimes with (3) applying in one regime and (4) in the other.

This example also shows that, when a situation analogoas=td occurs,

0.2 0.4

aq”
gt

0.6

0.8
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FIG. 2. Test case results for the QUICKEST scheme with the universal limiter. (a) Sensitivity at the initi
time computed using the adjoint. (b) Sensitivity at the initial time computed using the multirun method; so
curve fore = 0.001, dashed curve fer= —0.001.

no longer exists so that, strictly, the tangent linear model and its adjoint also no longer e
In order to obtain a sensitivity estimate from the adjoint calculation, some values for

of of

0a’ ab
must be arbitrarily specified when= b. Two possibilities are given by (3) and (4). A third
possibility is to take the mean of (3) and (4):

of of 11
(G2 3) = (53) ©
(There are many other equally defensible possibilities.) In fact, the result shown in Fig.
used the analog of (5) in the adjoint calculation. The other two possibilities, analogue:
(3) and (4), give sensitivities that are different yet again (Fig. 3).

Aswe shall see inthe next section, for most nonoscillatory advection schemes the prok
with discontinuous

aq
aq}“l

is most acute at places where the profife? is flat. This is analogous to the= b case

in the simple example discussed above. Then therqj"aﬁa/alues that are on the verge of

becoming extrema, and the flux limiter or monotonicity fixer in the scheme is on the vel
of switching on. In view of this, the test case discussed so far is clearly quite a severe
because the control forward integratigpprofile is flat over many grid points. Nevertheless,
this test has practical relevance because extensive areas of flat (in fact zero) values ©
for example, in the layer thickness field of isopycnal-coordinate ocean models where
layers outcrop, and a nonoscillatory advection scheme (or at least a sign preserving sch
is essential to ensure that negative layer thicknesses are not created [3].
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FIG. 3. Test case results for the QUICKEST scheme with the universal limiter. Panels show sensitivity at
initial time computed using two alternative approximations, analogous to (3) and (4), for the adjoint at the pc
where

aqt L . .
- is discontinuous. Compare Fig. 2a.
aqj

Figures 4 to 7 show results from a less severe test case for a variety of nonoscillal
advection schemes. In this case, the initial state for the control forward integration i
wavenumber 1 sine wave, so that the strong nonlinearity associated with the flux limite
monotonicity fixer should only be important near the maximum and minimum of the si
wave. For this test case, the scheme already discussed above (QUICKEST plus the
versal Limiter) is not very badly behaved, though there are noticeable differences betw
the sensitivities obtained by the adjoint method and the multirun method, and among
three versions of the adjoint method using analogues of (3), (4), and (5) above (only
case corresponding to (5) is shown). However, the sensitivity calculations using the ot
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FIG. 4. Testcase results for the QUICKEST scheme with the universal limiter. The initial data for the contt
forward integration is a wavenumber 1 sine wave. (a) Sensitivity at the initial time computed using the adjo
(b) Sensitivity at the initial time computed using the multirun method; solid curve £#010.001, dashed curve for
¢ = —0.001.
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FIG. 5. As in Fig. 4, but for the QUICKEST scheme made nonoscillatory using the flux corrected transp

algorithm [4

,32].

three advection schemes, which are typical of those in widespread use, are quite b

behaved.

3. INVARIANCE UNDER RESCALING WITHOUT FULL LINEARITY

IMPLIES A BADLY BEHAVED ADJOINT

It might be wondered whether there is some way of constructing an advection sche
that is well-behaved in sensitivity calculations without losing other desirable properties,
example, by modifying an existing scheme so that the switches act more smoothly. In

section we prove a result implying that this goal cannot be achieved.

Let A be the operator corresponding to an advection scheme thatqfrajpmito g":
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FIG. 6. Asin Fig. 4, but for a total variation diminishing (TVD) scheme using the van Leer limiter [27].
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FIG. 7. As in Fig. 4, but for a semi-Lagrangian scheme using cubic Lagrange interpolation with a simg
monotonicity fixer in which the interpolated value is forbidden to lie outside the range of the two nearest gridpc
values (e.g., [1]).

Many advection schemes, whether linear or not, satisfy the scaling property
Aj(aq) = aAj(Q) (7)
for all profilesq and for any constant. Indeed, many satisfy the stronger relation
Ai(aq+ BC) =aA(q) + B (8)

for all profilesq and for any constantsandg, and where is the constant unit profilg =
1Vi. The scaling property (7) implies that rescaling the initial conditions before advectil
gives the same result as rescaling by the same factor after advecting. Itimplies that we o
the same physical result irrespective of what ugits expressed in. The stronger property
(8) implies, in addition, that adding a constant to the initial conditions before advectil
gives the same result as adding the same constant after advecting. Less obviously, pro
(8) implies that two advected quantitigsandq, that are initially related by a straight line
functional relation

g2 = aqy + BC 9

retain this functional relation under advection. Compact functional relations, often clc
to straight lines, between mixing ratios of long-lived chemicals give valuable informatic
about chemistry, transport, and mixing in the stratosphere, for example, and it is crucial
numerical models to be able to capture those functional relations without distorting th
[e.g., 26]. Finally, properties (8) and (7) are implied by full linearity, though the convers
is not true. The continuous advection equation is linear in the advected quantity wt
the advecting flow is given, and therefore satisfies continuous analogues of (7) and
(whereA is then interpreted as the operator that advects thediéd a finite time). For

all of these reasons, the scaling properties (7) and (8) are arguably very desirable fo
advection scheme, given that full linearity cannot be achieved for a nonoscillatory sche
that is better than first-order accurate. Many widely used advection schemes, and a
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those discussed in Section 2 above, have property (8). Schemes that are sign preservir
not fully nonoscillatory cannot have property (8), but many widely used sign-preservi
schemes [e.g., 5, 24] have property (7).

A numerical scheme of the form (6) will be well-behaved in sensitivity calculation:
including adjoint calculations, if and only if the Jacobian

A
aq;

exists and is a continuous function of its data. Continuity of the Jacobian is also a neces
condition for the “correctness” of any tangent linear model derived from the scheme
[21]. Itis clear that continuity of the Jacobian is indeed the property that determines whet
or not sensitivity calculations give ambiguous or even unbounded results, since

93 93 8A;L@" D BA;, @D A, L@ 8AL@Q)
aqu - 8q?n aqn—l aqn—z aqn_s 3Q? .

jn—l jn—2 jn_s

(10)

(Here there is implied summation over each of the dummy subsdsipts, ..., jn.)

We will now show that a scheme that has both property (7) and a continuous Jacol
must be linear. First note, from the function-of-a-function rule for differentiation, that fc
anyoa

M| A an
9q; atq=p 9q; atq=ap
Also, takingd/aq; of (7) gives
9 Ax(aq) . 9 Ak(q) (12)
le] atq=p 9q; atq=p

Hence, since the left-hand sides of (11) and (12) are equal, the right-hand sides must
be equal

dA(Q) L)

= , (13)
aq; atq=p aq; atq=ap
provideda # 0. But now the continuity of the Jacobianas— 0 implies
A
9 Ax(q) _ dA(Q) . (14)
aq; atg=p aq; atq=0

That is, the Jacobian for any profidemust equal the Jacobian for a zero profile. Then th
partial derivatives can simply be integrated up, ugkif) = 0, to give

A
A= aq—| . (15)
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The scheme is manifestly linear, since the

0 Ax
q; atq=0

are constants.

The implication of this result is that an advection scheme satisfying (7) and with
continuous Jacobian cannot, by Godunov’s theorem, be both nonoscillatory and better:
first-order accurate. An equivalent statement of the result is that a scheme that satisfie
but is not linear cannot have a continuous Jacobian, and therefore cannot be well-beh
in sensitivity caculations. This means that a nonoscillatory, better than first-order accul
advection scheme (which must be nonlinear) that also satisfies (7) cannot be well-beh:
in sensitivity calculations.

In deriving the above result, we did not use property (8), but only the weaker scali
property (7). Therefore, the conclusion applies not just to nonoscillatory schemes satisfy
(8) but also to sign preserving schemes [e.g., 5, 24], which must also be nonlinear tc
better than first-order accurate, as long as they have property (7).

Itisinstructive to note why the conditions of the above proof do not hold for the nonoscill
tory schemes discussed in Section 2, and other nonoscillatory schemes. The scaling pro
implies that (13) must be satisfied. However, the Jacobian

9 Ax
Glof

is not continuous for a flat profilg = 0 (or, in fact, forq = gc for any constang), so
we cannot make the step to (14). This highlights the fact that flat profiles are the m
problematic for sensitivity calculations, since arbitrarily small deviations from a flat profi
lead to finite changes in

A
aq;

Finally, it might be wondered whether a well-behaved nonoscillatory scheme could
obtained by abandoning the scaling property. Indeed this can be done, and an exal
of such a scheme is given in the Appendix. However, on top of the extra complexity
the scheme, it has several other undesirable features: (i) because the scaling propert
been abandoned, the results obtained with the scheme will depend on the ungs th
is expressed in; (ii) an arbitrary tunable parameter must be introduced against whicl
measure deviations of thipprofile from flatness; (iii) the scheme becomes only first-orde
accurate when the profile is close to flat. Overall, the disadvantages of such a scheme ¢
likely to outweigh the combined nonoscillatory property and good sensitivity behavior, a
we would not recommend this approach.

4. DISCUSSION AND CONCLUSION

4.1. Alternative Strategies for Building Adjoints

The result derived in Section 3 above motivates us to consider alternative routes
constructing adjoints. In outline, there are three well-known possible routes:
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(i) Discretize-linearize-adjoint;
(ii) Linearize-adjoint-discretize; and
(iii) Linearize-discretize-adjoint.

So far we have been considering route (i), in which we have a discrete numerical mc
and we wish to linearize and take its adjoint. Route (i) has the advantage that, give
discrete nonlinear numerical model, the linearization and construction of the adjoint
largely be automated [2, 10], greatly reducing the development effort required for comp
models. A second feature of route (i) is that it leads to an exact adjoint of the origir
discrete nonlinear numerical model. The importance of this property is a subject of curt
research [e.g., 14, 23], and itis likely that the answer depends on the application. In prac
approximate adjoints have been used successfully for many applications (most of the
plications mentioned in Section 1, for example, make some sort of approximation) thot
an exact adjoint might be crucial for some purposes. The result of Section 3 implies 1
if we insist on retaining a nonoscillatory advection scheme with scaling property (7) wh
having a well-behaved adjoint then route (i) is no longer an option.

The simplest alternative to route (i) is a variation on route (i) in which the discretizitic
used in constructing the adjoint differs from that in the original numerical model. F
example, the flux limiter or monotonicity fixer could be removed from a nonoscillator
advection scheme for the purpose of constructing the adjoint. This retains the advan
that the linearization and adjoint stages of the construction can be automated.

Route (ii) appears to be possible using either a linear advection scheme or a nonli
nonoscillatory advection scheme. For example, simple test cases, such as those in Sec
in which the sensitivity is simply advected backwards using the original nonoscillato
advection scheme, yield accurate and well-behaved resultscétikiét al. [29] reached a
similar conclusion for amore realistic two-dimensional advective data assimilation proble
The use of a nonoscillatory scheme would be ruled out if linearity of the adjoint were cruc
for the application and better than first-order accuracy were required (though not if prope
(7) were sufficient). On the other hand, the continuous advection equation implies that
sensitivity

aq(Xz, t)
aq(X:L, O)

must be greater than or equal to zero; if it is important to capture the discrete analogu
this

n
aq; S0,
8qj

then a nonoscillatory scheme, or at least a sign preserving scheme, must be used to a
the sensitivity backwards [29].

Route (iii) is possible only if the discretization does not introduce any new nonlinearity,
a nonoscillatory advection scheme would, for example. If the discretization does introd
nonlinearity then a second linearization stage would be needed after the discretizatiol
this case, the result of Section 3 would still hold, so it appears that nothing would be gai
by this approach.
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4.2. Effects of Perturbed Advecting Velocity

So far we have considered the advecting velocity to be fixed, and only the dependenc
A onq has been considered. If we follow route (i) of Section 4.1 then, in the more gene
case, we must consider the dependendk of the advecting velocity too. (The values
may be defined at the same set of pointgjasr staggered with respect to them, depending
on the grid and schemes used.) Then, in order for the tangent linear model and adjoir
be well-behaved, we requifed,/3q; andd A, /du; to be continous functions of bothand
u. There are two possible sources of discontinuities, related to jumps in the stencil an
switching of limiters.

Discontinuities caused by jumps in the stencil have been discussed previously, [e.g.,
Small changes in Courant number, usually as it crosses an integer value, can result
different set of gridpoint values (the stencil) being used to calculate the updated fiel
and hence to discontinuities i, /9q; andd A¢/du;, or even inA itself. This potential
problem is particularly relevant for semi-Lagrangian advection schemes because they
stable for large Courant numbers, so providing more opportunities for near-integer Coul
numbers. Other kinds of advection schemes are usually restricted to Courant numbers
ween—1 and 1 but may still experience a jump in stencil and a discontinuityliry ou
as the Courant number goes through zero if the scheme is an “upwind” sctéefagl q;
should approachy; as the Courant number approaches zero, whgres the Kronecker
delta, and should therefore be continuous across zero.) For semi-Lagrangian schem
has been shown [21] that this problem can be eliminated by using interpolating functic
that are continuous and have continuous derivatives across grid cell boundaries.

Discontinuities caused by switching of limiters is a distinct problem, and is the topic
this paper. Variations in eitheror u might cause a limiter or monotonicity fixer to switch
on or off, and botl® A, /0q; andd Ay/9u; can be discontinuous across the limiter switching
point. Thus, any of the following possibilites might occur:

(i) 9A«/9q; might be discontinuous apvaries across a limiter switching point;
(i) 9 Ax/du; might be discontinuous apvaries across a limiter switching point.

For some limiters, variations im cannot cause the limiter to switch. If variationsurtan
cause the limiter to switch then

(iif) 9 Ax/d0q; might be discontinuous asvaries across a limiter switching point;
(iv) 9Ax/du; might be discontinuous asvaries across a limiter switching point.

In the preceding sections we have examined possibility (i) and shown that this kind
discontinuity is unavoidable for a nonoscillatory scheme satisfying the desirable scal
property (7). A couple of examples will illustrate that the remaining possibilities may «
may not occur.

For a total variation diminishing (TVD) scheme with the van Leer [27] limideXy /9 u
is in fact continuous ag varies across the limiter switching point, so possibility (ii) does
not occur, even thoughAy/9q; is discontinuous. Also, variations indo not cause the
limiter to switch, so possibilities (iii) and (iv) do not occur.

For the QUICKEST scheme [16] with the universal limiter [17], on the other hanc
9 Ax/0u; is discontinuous ag varies across a limiter switching point, and also variation:
in u can cause the limiter to switch and baild/dq; and d Ac/du; will generally be
discontinuous asl varies across the limiter switching point. Thus, all four possibilities
(i)—(iv) occur for this scheme.
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4.3. Conclusion

Nonoscillatory advection schemes can lead to ambiguous results in sensitivity calc
tions, whether those calculations are carried out via multiple perturbed forward integrati
or by using the adjoint of a linearization of the scheme. Examples of the problem h:
been shown in a simple test case for several schemes typical of those widely used.
have shown that this sort of problem is unavoidable for nonoscillatory or sign-preserv
schemes that are better than first-order accurate and therefore nonlinear, unless a c
desirable scaling property is given up. Consequently, alternative routes to constructing
joints for advection problems must be considered, and another work [29] has shown
the linearize—adjoint—discretize route can be successful.

APPENDIX: A NONOSCILLATORY SCHEME WITH A CONTINUOUS JACOBIAN

Consider advection schemes of the form

n+1

q "= an + c(Gj_1/2 — Gj+1/2), (16)

wherec is the Courant number, taken to be constant and positive here for simplicity. D
ferent choices for determining thévalues yield different advection schemes. The sim:
plest nonoscillatory advection scheme with a continuous Jacobian is the first-order upw
scheme given by

Qj11/2 =10 17)

A more accurate nonoscillatory scheme with continuous Jacobian is given by

N 1
Qj+12=0j + 5(1—C)¢(rj)‘1’(sj)(QJ+1—qj'), (18)
whereq’s are now understood to be evaluated at steless otherwise indicated. Here

(= i —Qj-1

 Qje1— G
andg (r) is one of the well-known van Leer limiter functions [27]

r+1ri
1+r|

¢r) =

If the function¥ were identically unity then this scheme would be a familiar TVD schem
(satisfying (7)), but which has discontinuitiesdi/dq; for flat profiles and wheng; — 0

or co. To remove these discontinuitied,is defined to be a function that controls a smoott
transition from a first-order upwind schem& & 0) for flat profiles to the original TVD
scheme ¥ = 1) at large amplitude:

S+ s|

20 = 77 Is|’
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where

_ (@j+1—9)(@j —Qj-1)
= 2 ,

S

anda is a tunable parameter that defines the amplitude for the transition. It may be verif
thatd Ay/90; is indeed continuous for the resulting scheme. However, the resulting sche
no longer satisfies (7).
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